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THE EFFECT OF MULTICOMPONENT DIFFUSION ON THE STABILITY OF ~MINAR FLAMES* 

A.M. GRISHIN and E.E. ZELENSKII 

The problem of the stability of the combustion of a three-component gas 

mixture (fuel, oxidiser and reaction products) is formulated and studied, 

taking into account the exact mutual diffusion between the components. 

Boundaries of two regions of thermodiffusive instability TDI-1 and TDI-2 

for two mixtures with widely different diffusion properties are constructed, 

and a comparison is made with the binary theory. The effect of theinitial 

composition of the mixture (a weak, stoichiometric or rich mixture) on 
the position of the boundaries of the monotonic and oscillatory instability 

is studied, 

The problem of the thecmodiffusive instability TDI of a laminar flame 

in case of a substantial deficiency of fuel was studied in /l-8/. The 

mechanism of the onset of TDI proposed in /l/ for a Lewis number L>i 
(,C= D/x; D, x are the effective diffusion coefficient and thermal con- 

ductivity) connected with the distortionofthe flame front was confirmed 

quantitatively in /2-S/. The perturbations increase monotonically in 
this case (region TDI-2, the terminology is that of /3, 4,'). Another 

mechanism responsible for the appearance of TDI was suggested in /6/, and 

studied within the frame-work of the formulation of the problem in /2/, 

analytically and numerically in /7/. This instability is oscillatory 

and is realized when L<1 (TDI-1). In /a/**, (**See also, Aldushin A.P. 

and Kasparyan S.G. Thermodiffusive instability of a stationary combustion 

wave. Preprint, Chernogolovka, Otd-niye Inst. Khim. Fiziki, Akad. Nauk 

SSSR, 1978.) where the assumption used in /2-5, 7/ of the quasistationary 
character of the velocity of perturbed flame front is not used, satisfac- 

tory matching of the boundaries of the zones TDI-1 and TDI-2 with those 

obtained in /3-5, 7/ was achieved (the difference does not exceed 8%). 

1. Let an irreversible chemical oxidation reaction take place in a gaseous mixture 

where vi are the stoichiometric coefficients and A,, A,, A, are the symbols of the fuel, 

oxidiser and reaction products respectively. We assume, as in /2-5/, that the chemical 

reaction front is infinitely thin, which is true in the case of a chemical reaction with a 

strong (exponential) dependence of the reaction rate on temperature, and a substantially 

weaker (power) dependence on the concentration of the components in the mixture. When the 

thickness of the reaction zone is taken into account, we find, according to /8/, (see also 

the reference in the footnote), the region TDI-2 narrows slightly. In accordance with /2-5/ 

we regard the chemical reaction front as a surface of a weak discontinuity in temperature 

and component concentration. In order to simplify the problem we shall neglect the diffusive 

energy transfer as compared with conductive transfer,. which of course can be justified e.g. 

for a mixture in which the heat capacities of the components are nearly the same. We assume 

that the binary diffusion coefficient Dik and the thermal conductivity x are constant 

/2-S/ and correspond to the temperature of combustion. 
The surface of the perturbed reaction zone is given in the form /2/ 

2 = E (y, t) = E eXp (i&d -j- iit) 

where e. represents the small amplitude of distortion of the front, K is the real wavenumber, 

Q is the perturbation frequency and %(~,t) is a small deviation of the chemical reaction 

front from its unperturbed position. 

We assume that the mass combustion rate m, just as in /2-5/, is known from the theory of 

the normal combustion of gases /9/ 
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(1.2) 

Here E is the energy of activation, R is the universal gas constant and Tf is the 

temperature of the perturbed chemical reaction front. 
From (1.2) we see that the problem is studied in the quasistationary formulation and the 

dependence of the components on concentration is neglected /2-5/. Moreover, we assume that 
the functional dependence (1.2) of the quantity m on the temperature T,, which holds for a 
binary mixture, also holds for a multicomponent gas mixture. 

In accordance with what we have said, the process of quasistationary propagation of a 
combustion wave is described, in a coordinate system attached to perturbed reaction zone, by 
the following system of equations: 

where Ct is the mass concentration of the i-th component, JiX, Ji, are the projections of the 
diffusion flux of the i-th component on the coordinate axes, p is the density of the mixture 
and u is the steady velocity of the flame, while the indices 1, 2 and 3 corresponds to the 
fuel, oxidiser and reaction products respectively. 

The diffusion fluxes appearing in Eqs.Cl.3) are connected with the concentration of the 
components by the Stefan-Maxwell relations /5/ 

where Xi is the relative molar concentration of the i-th component. 
Using the relation between the molar and mass concentration /9/ we obtain, from (1.4), 

(1.4). 

Ijz=-(Uj~$+Uj$$); Z=X,y; j=1,2 

~1, = n Wa - b&d, ~12 = n (b&a - $b,f, ~1 = n (WT - b&a) 
a sa = n @a% - b&a), n = pD,, (b,b, - b&J1 

(1.5) 

The coefficients bi are given by the formulas 

b, = JG + Cl (n3 - n,), b, = 1 f C, (x3 - I) 

b, = Cl (ng - n,), be = c, (I - n,) 

b, = Cl (1 - n,), b, = 1 + cl (x2 - I) 

b, = n, + Ca (n, - n,), b, = C, (nl - n2) 

Taking into account Eqs.Cl.51, we can write the diffusion equations in the form 

pdCj/dt = qlAC1 + q,AC,, j = 1, 2 V) 

When writing (1.61, we assumed the coefficients &Jr to be constant in order to obtain 
linear equations. This assumption completely retains the main aspect of multicomponent dif- 
fusion, namely, the interpenetrating nature of the diffusion of the components of the mixture, 
and this is essentially analogous to the assumption of /2-5/ that the effective diffusion 
coefficient is constant. 

We shall write the boundary conditions as follows: 

I==-CO, T = T,; z=+m, T = Ta; .?2=fCO, 

i3Tlax = 0 (1.7) 

3 = -00, CJ = CJf,; r = +m, c, = c,,; 5 = fm, 
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ac,iax = 0; j = 1, 2 (1.8) 

where CiO is the initial concentration of the i-th component, To is the initial temperature, 

Tb is the adiabatic temperature of combustion and cib is the equilibrium concentration of 
the i-th component. 

The relation connecting the equilibrium concentrations Clb and Clb is 

and is obtained by integrating the one-dimensional non-linear stationary diffusion equations 

in z from -co to +=J, eleminating the source terms with the help of the stoichiometric 

relation (1.1) and taking into account the boundary conditions (1.8). 
Depending on the composition of the mixture in question we must put, in the boundary 

conditions (1.8) and expression (1.91, Clb = 0 for a weak mixture, C2b = 0 for a richmixture 
and Clb = CSb = 0 for a stoichiometric mixture. 

We can obtain an expression for the adiabatic combustion temperature by the usual methods 

Tb = T, + Q (CM - c,b& 

where g is the thermal effect of the reaction and cp is the specific heat capacityatconstant 

pressure. 
The boundary conditions at the perturbed front of a chemical reaction have the form 

(1.10) 
(1.11) 

(1.12) 

(1.13) 

Conditions (l.ll)-(1.13) are obtained by integrating the equations of diffusion and energy 

with sources in x from 5 -S/2 to E + 612, foll owed by making the thickness of the reaction 

zone 6 tend to zero. The derivative along the normal to perturbed front differs from the 

derivative with respect to I by the quantity 0 (s% which is neglected in the linear 

analysis of the stability. 
The system of Eqs.tl.6) has the following solution in the region x>o: 

Ct IL+O = Cib, Ji, ]&+a = 0, i = 1, 2 

Taking into account (1.14) we obtain, from (1.11) and (1.12). 

(1.14) 

(1.15) 

and this enables us to utilize, in what follows, a single boundary condition 

Jr, It-0 = m (GO - Clb) (1.16) 

in which Clb = 0 for a weak and a stoichiometric mixture, and the value of Clb for the 

rich mixture is found from (1.9). 

We note that relations of the type (1.15) can be obtained for any number of components 

in the mixture. 

2. A stationary solution of the one-dimensional energy equation with boundary conditions 

(1.7) was obtained in /2/ 

T(x) = T, + (Tb - T,) exp (L&X) (x < 0) 

T (5) = T, (s> 0) 

The system of one-dimensional diffusion Eqs.(1.6), for boundary conditions (1.8), has 

the following stationary solution: 

Cj (5) = Cj0 + Cjr exP (%x) + Cj* exP (&r) (5 < 0) 

c, (.‘d = c,b (x > 0) 

C,j = (- f)jhjEpj, C,j = (- l)j T@pj, ?lj = (m - U,lhj)/U,, 

E = Wlb - Cd (m - d.,) - "ls$(c,b - Go) 

f m(&-L) I j = I,2 

(2.1) 
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We note that the characteristic equation of the system of one-dimensional stationary 
diffusion equations, under the conditions 

%l%B - =12%41 > 0 (2.2) 

(%I + %2)2 - 4 (u11um - umu91) > 0 

will have a double zero root in addition to the positive real roots 5, and 1,. A particular 
solution of the form &+sP corresponds to the former root, where S, are constants and 
s, = 0 by virtue of the boundary conditions (1.8). 

Putting aI8 = 0, in (2.1), we obtain the well-known stationary solution /2/. 
In accordance with the method of small perturbations, we will seek the solution of the 

non-stationary 
form 

energy and diffusion equations, taking into account expressions (1.14), in the 

T = T (.2) + T,, cj = cj (5) + C,' (5 < 0) (2.3) 

T = Tb + T,, CI = CJb (X > 0) 

TJ = gJ (x) exp (iKy + Qt), Cj’ = Aj (5) exp (Xy + Qt), 

j =I,2 

The functions g, were found in /2/ 

gj (z) = Dj (Tb - To) exP (~JX)T ah2 = Y& k 
v- 

where D, are arbitrary constants. 
The characteristic equation of the amplitude boundary value problem for the perturbations 

in concentration has, under condition (2.21, four real roots 

PW = + & Q1, Bz.4 = + +Qz, 

Qi=I/y+K'+$h,, i=l,2 (2.4) 

We shall write the final expressions for the amplitudes Al(s) as follows: 

A,(x) = D,Ajrexp (IQ) + D&JB~~P @rz) 

At = u,, (K2 - 81% A,, = %a (8J2 - K*) - Pg - m@J, 

j = 1,2 

(2.5) 

Substitutingthesolutions (2.3)-(2.5) into the boundary conditions (l.lO), (1.13) and 
(1.16) and linearizing, we arrive at a system of five linear homogeneous algebraic equations 
in the unknown constants e, D,,...,D4. The condition that non-trivial solutions of this 
system should exist, yields the characteristic equation for determining the dimensionless 
frequency of perturbations 

(z-al/l + o)F + z.L(~ -al/l + o)G = 0 (2.6) 

F = B,y,Vl + d,o - BIYIVl + d,w + Yl - Yz 

40x OS=, a=1/1+k", k+, L=+ 

- To) 
z= 

E (Tb 
2RTb' ' G=(PI-Pc~I)($+~~) 

fI,=l/i++ 
k.a11 

Pi =*v di = f& 

yi=l-pi+ 
( . 

JLp,, i=1,2 ’ 

When ax4 = 0 Eq.(2.6) is identical with the dispersion equation given in /2-5/. 
As we know (e.g. /4/), when k is fixed, a 1:l correspondence exists in the L, z parameter 

plane between the boundaries of the TDI-1 and TDI-2 zones and the points for which Eq.(2.6) 
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has the root o = i$ ($'> 0) and o = 0 respectively. 

We shall study these cases separately. 

3. Let us consider the case of monotonic instability. When o =0 and k =0, Eq.(2.6) 
is satisfied identically, and this corresponds to theinvariance of the plane flame front 
relative to the displacement of the coordinate system /4, 8/. 

In the case of long-wave perturbations (k<l) we have the asymptotic solution 

which, when a12 = 0, is identical with the known asymptotic expression /2-5, 8/. The curve 
described by Eq.(3.1) has a vertical asymptote z = 1,whichisidenticalwith the results of /2- 

5, 8/, and a horizontal asymptote L =.L,. Unlike in /2-5, 8/, the value of L, can be greater 
or smaller than unity, depending on the sign of the coefficient aI2 (the quantity a,, is 
always positive). 

When k is arbitrary, the neutral curve z = .z (& k) will be described by the following 
equation: 

The curve L = L(z,/c) given by Eq. (3.2) has a vertical asymptote 

kV.1 
Z=Z*=i+k--)/j 

which is the same as that in /3-5/, and a horizontal asymptote L = L, where Lo is a real 
positive root of the equation obtained by equating to zero the ratio in (3.2). When a12 = 6, 
the root in question (L, = 1) will correspond to the case discussed in /3-5/. 

In order to be specific, we shall compute the coefficients aik? using the values of Dik 
and, Mi of the reactions 

2C0 + 0, = 2C02, 2Hz + O2 = 2Hz0 

for which we have, respectively, n, = 1.3292, s2 = 1.571, 3t3 = 1.375, n4 = 1.3555 and s1 = 3.6764, 

nz = 9, n3 = 0.5625, 3tp = 0.8097. The values of Dik were taken from the monograph /9/. 
Fig.1 shows the boundaries of the region of oxidation of CO for k = 2. The dot-dash 

line 1 is the curve obtained in /3-5/. The solid line 2 corresponds to a stoichiometric 
mixture (C,, = 0.6363, CzO = 0.3637), and the dotted line 3 represents the boundary of the zone 

TDI-2 for a rich mixture (c,, = 0.8, C,, = 0.2). The region TDI-2 is situated above the corre- 

sponding neutral curve. Analogous neutral curves for the combustion of hydrogen are shown in 

Fig.2 (1 is the curve of /3-5/, 2 corresponds to a stoichiometric mixture Cl0 = 0.111, c,, = 

0.889; and 3 corresponds to a rich mixture C,, = 0.8, C,, = 0.2). We see that as far as the 

qualitative aspects are concerned, the behaviour of the boundary of TDI-2 is the same as that 

of /3-5/ except for the quantity C,, which was discussed above. The quantitative difference 

between the first and second reaction is sufficiently large, especially in the case of rich 

mixtures. Taking into account multicomponent diffusion, in the case of the hydrogen reaction, 

leads to a noticeable widening of the zone TDI-2 and the appearance of growing perturbations 

for Lewis numbers L,<L< 1. In the case of the first mixture, however, taking into account 

mutual diffusion stabilizes the flame front with respect to its distortions. 

The influence of the wave number k on the position of the boundaries of the region TDI-2 

in the case of the stoichiometric combustion of COand Hz is shown, respectively, in Figs.3 

and 4 for k = 0.1, 2, 3 (curves 1-3 respectively). When k increases, the corresponding neutral 
curves shift to the right and depart, when k>4, from the domain of real values of z in 

accordance with the results in /3-5/. 

Calculations carried out for weak mixtures have shown thatinthis case we have satisfac- 

tory agreement with the binary theory /3-5/, especially in the case of the combusion of CO. 
We note that calculating the normal rate of combustion of this mixture taking multicomponent 

diffusion into account, gave an analogous result /lo/. 

4. Let us now inspect the oscillatory,instability of the flame. Assuming that 0= 
iq($">O) 'in (2.6) and equating to zero the real and imaginary part of this equation, we 

obtain the parametric'representation of the neutral curve in the form 

f (L 2, k,$) = 0, g (L, z, k,+) = 0 

We will omit the functions f and 9 for brevity. Eliminating the parameter rl, we obtain, 

for fixed k, the equation of the neutral curve L = L (2). 
The results of the computations are showninFigS.l-4 by curves 4-6 corresponding to the 

same values of the initial parameters as curves 1-3 respectively. The region TDI-1 appears 

under the corresponding neutral curve. 
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Fig.1 

Fig.2 

Analysing Fig.2 we find that when mutual intercomponent diffusion is accurately taken 
into account, we find that in the case of the combustion of Ho this leads to substantial 
narrowing of the zone TDI-1. 

In the case of the combustion of carbon monoxide we see from Fig.1 that, taking into 
account multicomponent diffusion causes an insignificant broadening of the region of the 
appearance of relaxation oscillations in the flame velocity. For both reactions that greatest 
discrepancy in the position of the boundaries of the region TDI-1 constructed taking into 
account multicomponent diffusion and in the binary diffusion approximation, is oberved for the 
case of a rich mixture. For a weak mixtures we have satisfactory agreement with the binary 
theorem, as well as for the boundaries of the zone ~~1-2. 

Fig.3 
Fig.4 

When k increases, the neutral curves shift to the right (see Fig.3 and 4) is accordance 
with the results obtained in /3-5/. 

Thus the results of our investigations have shown that in case of mixtures which are 
almost stoichiometric and of rich mixtures, accurate inclusion of mutual diffusion may lead to 



68 

an appreciable change in the general pattern of TDI in the case of large differences in the 
molecular weights of the components. In the case of weak mixtures, the different mobilities 
of the components are compensated by the deficiency in fuel. 
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